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THE PRIORITY ARGUMENT 

Chapter 1: Recursive Function Theory 

Recursive function theory is the study of algorithms of 

natural numbers. The priority argument is a general method for 

proving theorems in this theory. It provides a means for assign-

ing priorities to infinitely many sets used in the enumeration of 

certain types of sets. 

N is the set [o,l,2,3, ... ,n,n+l, ... J of natural numbers. 

Unless otherwise stated, all numbers are natural numbers, all 

sets are subsets of N, and all function are from Nk into N. A 

partial function is a function from a subset of Nk into N. 

The fundamental notion of recursive function theory is the 

notion of an algorithm for computing a partial function. There 

are several equivalent precise definitions of algorithms. Among 
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these are the definition of Turing (see Davis [1958]), Kleene [1952] 

and Markov (see Mendelson [1964]). For our purposes an intuitive 

description is adequate. An algorithm is a finite, ordered set 

of instruction such that a computer, using an element of Nkas input, 

can follow these instructions without the use of any intelligence. 

The output of the algorithm (if there is any) is an element of N 

and will be arrived at in a finite amount of time. Notice we have 

said the computer needs no intelligence to follow the instruction. 

We mean by this that it only needs to understand each instruction 
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and be able to carry it out. If the computer can't understand 

or carry out an instruction, then it does nothing and there is 

no output. Thus if our computer understands only English and 

comes across the instruction "aflp-# nop zed" or the instruction 

"Express the ratio of the circumference of a circle to its diameter 

as a rational number" it will do nothing and there will be no out-

put. Examples of algorithms are 1) the Euclidian algorithm for 

finding the greatest common divisor of two numbers and 2) the 

th method of Eratosthene's sieve for finding then prime number. 

3) "Take x as input, Add x to itself one time, Subtract 1 from 

this result, Give this number as output" is an algorithm for 

finding 2x-1. Also 4) "Do nothing" and 5) "rplfmhG,t" areal-

gorithms, but they give no output for any number. Finally, 6) 

"If the input is 7, 15, 93, or 1079 give 8 as output" is anal-

gorithm which gives output for only four different inputs. 

Notice that the instructions (and hence the algorithms) 

are strings of symbols and that in order for the computer to un-

derstand the instruction there must be only a finite number of 

symbols choosen from a finite set, called the computer's voca-

bulary, to which the computer attaches meaning. Using this fact 

we can prove the following result due to Kleene and known as the 

Enumeration Theorem: 

Theorem. There exists a function f that assigns a number 

to each algorithm. This function is 1-1 and onto. Both f and 

f-l are effective (in that given an algorithm A, f(a) can be ef-

fectively computed and conversely given n€N, A such that f(A)=n 

can be effectively found from n). 
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Proof: Assign each symbol in the computer's vocabulary (and 

the blank space) a unique number. The ordering of these numbers 

will be the ordering of the symbols. th Let Si be the i symbol, 

with n symbols in all. Then enumerate all the algorithms in the 

following order: s 1 , S2, S3, ••. , Sn, s 1s 1 , s 1s 2 , ... , s 1sn, 

s2sl' ~2s2, s2s3, ••• , s2sn' •.• snsl, ••• , snsn' slslsl, 

s 1 s 1 s 2, ••. , s 1 s 1 s n, s 1 s 251, ••. , s 1 s 2s n, ••• , s 1 s n s 1, .• : , 

th~~ i~, 

all the one symbol algorith~s, followed by all the two symbol 

algorithms, followed by the three, the four, etc. with each group 

of the same length ordered alphabetically. This listing is 1-1, 

onto N and is effective. The nth algorithm in the above listing 

is denoted A and n is called the Godel number of An. 
n 

To each algorithm A, there corresponds a function 

from a subset of Nkinto N defined as follows: given x as input, 

'(x) is the output of the algorithm A with x as input. If there 

is no output for x, x is not in the domain off, hence we say ~(x) 

is undefined. Thus the domain and range off may both be empty. 

The function if corresponding to the algorithm with Godel number n 

is denoted 'f n. Notice that two functions lf n and 'f m may be 

equal as functions but the algorithms An and Am may be quite 

different, that is with n~. 

A function f is a partial recursive function iff f= sPn for 

some n. A recursive function is a partial recursive function whose 

domain is all of N~ Now the set of partial recursive functions 

is countable by the Enumeration Theor~, but the set of all functions 
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from subsets of N into N is not countable. Hence there exists a 

function which is not partial recursive. 

A set A is recursive enumerable (is r.e.) iff A is the 

range of a partial recursive function. We denote the r.e. set 

which is the range of lf n by En. 

The characteristic function of a set A is the function XA 

from N into f 0,13 defined by XA ( x) = 1 if X E: A, 0 if X .. A. 

the set A is recursive iff XA is a recursive function. 

Notice the following: A is recursive if and only if there 

is an effective procedure for deciding whether or not an arbitrary 

number is in A. 

Proof: ~ ) Assmne A is recursive . . The.n there is an 

algorithm for finding XA(x). If XA(x) = 1, x £A. If XA(x) = 0, 

x f A. 

~ ) Assume there is an effective procedure for 

deciding whether or not n € A for any n. Then XA is recursive. 

Then A is recursive. 

We now prove the following lemma: the set of all ordered triples 

of numbers can be enumerated. 

Proof: Let (a,b,c) be an ordered triple. The volume of the triple 

is a+b+c. The height of the triple is b+c. Then for each n € N 

the . number of triples with volume n:l~ finite and for any volume the 

number of triples with height less than or equal to that volume 

is finite. Thus we can effectively list the order triples by 

putting them in order by volume and within each volume by height. 

The ordering would go (0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,0,2), 

(0,1,1), (1,1,0), (2,0,0), (0,0,3) etc. A corollary to this lemma 
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is that the set of ordered pairs can be enumerated. 

The r.e. sets are those whose elements can be effec-

tively listed. 

Proof: ~)Let Anj(i) be the jth act in computing~n(i). 

Start computing yon(i) for all U! N simultaneously. This means 

perform the acts in the order for pairs where (j,i) is the pair 

for Anj( i). Whenever lf n( i) is found, add this to the list of En. 

<=)Suppose x
0

, x1, ... is an effective listing of a 

set. Define r by tf ( i)= xi. Then f/ is a partial recursive func­

tion -since the listing is effective and it's ranse is [xi: :LeN J. 
We will make use of the above remarks throughout that which follows. 

The following are examples of recursive sets: 1) N 2) ~ 3) the 

set of even numbers 4) the set of prime numbers. 

The compliment of the set A(denoted Ac) is the set of all a inN 

such that a is not in A. c Thus XAc=l-XA,so if A is recursive, so is A. 

If A is finite then A is recursive. 

Proof: Let x be given. Look through the elements of A. If x appears 

xe A and XA(x)=l. If x does not appear, x~Acand XA(x):::O. This is 

an effective procedure since A is finite. 

Since the compliment of every recursive set is recursive, every 

cofinite set is recursive. 

We now prove several theorems; first, if A is recursive, 

then A is r.e. 

Proof: The following is an effective procedure for listing the 

elements of any recursive set: For each i £ N find XA( i). If 

XA(i) = 1, adjoin ito the list of A. 
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Theorem: A is recursive if and only if A and Ac are both r .e. 

Proof: ~) A recursive ~ Ac recursive ~ Ac is r.e] ~ 
A recursive~ A is 

A and Ac 
r.e. 

4:;:) Since A and Ac are r .e., each is the range of 

a partial recursive function. Let A = Range c 
W n and A =Range of (£) 
T r m. 

Then for a given x look at r n(O}, Cfm(O), f(n( 1), lf m( 1), '/n(2), 

fm(2), .... x must appear as one of these since A U Ac = N. If 

X = r n ( y) for s orne y, X E A. I f X = r m ( y) for some y, X E A c . 

Theorem: If A and B are r.e. so are A n B and AU B. 

listings for A and B respectively 

an effective listing for AU B. Enumerate A and B. When x appears 

in both lists, adjoin X to the set A n B 

A corollary to this theorem is: If A and B are recursive so are 

A n B and A U B. 

Proof: A and B recursive9A and Bare r.e.~A U B is r.e. 

A and B recursive~ A c and Be are recursive~ A c and Be are r. e. 

=9-Acll Be is r.e. -:9 ( AU B)c is r.e. 

But AU B and (AU B)c r.e. ~AU B is recursive. 

Similarly for A n B. 

Most of the early results in the theory of recursive functions 

relied on a diagonal argument. This type of argument is illustrated 

in the proof of the following theorem: 

Theorem: The set of recursive functions is not r.e. 

Proof: Assume it is r.e. Then we can write out the recursive 

functions in order f
0

, f 1 , f
2

, .... Define f such that f(n) = f (n) + 1. 
n 

are r .e . 
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f is clearly recursive. Then it must be in the list, that is, 

f = f for some n. But f (n) = f(n) = f (n) + 1 which is a n n · n 

contradiction. 

Corollary: The set of recursive functions is not recursive. 

This means there is no algorithm for telling whether or not a 

given algorithm defines a recursive function (rather than only 

a partial recursive function). 

The Creative Set K. 

We shall now define a set which is r.e. but not recursive. 

We let K be the set of all numbers n such that n € E , i.e. 
n 

K = f n:n £ EnS. K is known as the creative set. 

Theorem: K is r.e. 

L be the J.th · h i f et a. . act 1n t e enumerat on o E .. 
1J 1 

Enumerate all the E1 's simultaneously. This means perform the 

acts in the order of the enumeration of ordered pairs with a .. 
1J 

corresponding to (i,j). 

list of elements of K. 

Whenever n appears in E place n in the , 
n 

Thus K is effectively enumerated. 

Theorem: K is not recursive. 

Proof: c Assume K is r.e. Then Kc = E for some n. 
n 

Thus 

c n E K ~ n~ E ~ n 46: K . This is a contradiction. Hence 
n 

Kc is not r.e. and thus K is not recursive. 



Chapter 2: Turing Reducibility and Post's Problem 

We wish now to discuss the concept of one set being 

recursive in (or reducible to) another. Intuitively, A is 

recursive in B means that there is an algorithm for compu-

ting XA from~· Suppose we have a set Band an algorithm 

A- With a finite number of instructions of the following 
n 

type: "If ~(y)=O, then do ... , if ~(y)=l, then do ... " 
Now if B is recursive our computer will have no trouble de-

ciding whether ~(y) is 0 or 1. But if B is not recursive, 

then there may be no output. Now if our computer had some 

method of knowing XB(y) whether or not B was recursive, then 

there would be no problem. (Turing spoke of the computer 

having an oracle.) So we define AB to be an algorithm with 
n 

XB attached. We then define JB -to be the partial function 
7 . n 

B 
defined by A . 

n 

We now make the definition that A is recursive in B, 

or A is Turing reducible to B (denoted A~B) if and only if 

B 
there exists ann such that sPn=XA. We have the following 

propositions: 1) A'!A and 2) if A~ B and B~ C, then A~C. 

Proofs: 1) Innnediate since clearly XAts recursive in A. 

2) Our computer can evaluate XA(n) for any n by evaluating 

~ for a finite number of inputs. It can evaluate ~ for 

each of these inputs by evaluating XC for a finite number of 

8 
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of inputs ... : Thus-.,e :cant ~_f.ind Xj\(d) :by : eval~ating· XC -'for' a :finite 

of inputs. tl\usi A~ ~c-. Thus· i-t 'ife define .(·""'B tff A~t ind 

B'.~ A, we· have thati. ,.; i~ an equ:iv4l:llenee~ re~taiGI'l. 

We now define A = { B !A_. Bj. A is called the Turing 

degree of A. The notion A~ B iff A~ B is well defined. Proof: 

- -Let A~ B. Suppose A'~ A and B'£ B. Then A,-vA' ~A'~ A and 

B""" B ·~ B ~ B'. Hence A·~ A'S. B~ B 1 
• Hence A'S. B 1 

• Therefore 

we have a partial ordering of Turing degrees. The lowest Tur-

ing degree is the degree of a recursive set, for let A be re-

cursive. Then A is recursive in any set B since we can find 

XA(n) without having to ask any questions about B. This lowest 

degree is denoted ¢ since ¢ is recursive. 

The degree of A is a recursive enumerable Turing degree 

(r.e. degree) iff there exist B£ A such that B is r.e. Notice 

that BE A and A is a r. e. degree does not necessarily mean B is 

r.e. For consider K. K is r.e.; thus K is r.e. However Kc is 

c c -not r.e. but clearly K-K 1 and hence K E. KJby ~= 1- ~c. The 

highest r.e. degree is K. To prove this it suffices to show if 

A is r.e. then A~K. Let A be r.e. Fix m. Define fm(x) by 

fm( x)=x if m €. A atrcl:f~-isundefined otherwise. fm· is partial re-

cursive. Proof: Generate A and when m appears in A give output 

x. This is an algorithm; thus each tD= 'fi for some i. Now this 

i can be found recursively from m by the Enumeration Theorem. 

Hence there is a recursive function g such that g(m)= i where 

Thus Eg(m)= N if mEA; ¢ if m£A. Hence m £A ~ 

Eg(m)= N~g(m)f: Eg(m)~g(m)EK. Thus A~K. 

The question arises whether the only r.e. degrees are¢ 
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and K. This problem was first posed by Emil Post in 1944 

and became known as Post's Problem. It was finally solved 

in 1956 when Friedburg and Muchnik independently and almost 

simultaneously found the solution. This solution is presen­

ted in the next chapter as the first example of the priority 

argument. 

10 



Chapter 3: The Solution to Post's Problem 

Difficulties involved in finding a Solution 

Post's Problem remained unsolved for 12 years. This 

was due in large measure to the fact that to show that there 

are more than ~o r.e. degrees requires a nonconstructive ap-

proach. We discuss what this means below. 

B 
We say that A is r.e. in B iff A is the range of~ n 

for srilne n. Then we have the following theorem: A~ B ~A 

and Ac are both r.e. in B. 

Proof: ~ ) Let x be given. Let A be r. e. in B by f! 
c B B B B B 

and A by </ m. Look at f n ( 0) , f m( 0) , f n ( 1), <f m( 1) , .... 

11 

x must appear in this list in a finite number of steps since 

AUAc= N. Ifr !(i}=x, then XA(x)= 1; if 'f !(i}=x, then XA(x)=O . 

This is an algorithm in B and thus A~ B. 

~) Suppose XA= ~!· Then simultaneously begin 

B B 
computing f n( x) for all x. Whenever 9' n( x)=l put x in the 

list of A. This is an effective listing by an algorithm in B. 

Let the first element listed be x0 , the second x1, etc. Then 

fB such that Y?B( i)= xi is a function recursive in B with range 

A. 
c 

Similarly for A . 

To show there are more than two r.e. degrees we can try 

to ftnd a r. e. set C such that C # ¢ and K /:C. Now by the above 



AfB for A and B r.e. is equivalent to for all x, A~ E! or 

But we know that there is an x such that A= EB. 
X 

c B Thus for all x, A , E . This is equivalent to for each x 
X 

there is a y such that y f:. A c if and only if y E. EB. Now 
X 

suppose this y can be found from x by a recursive function 

f. Then we would have there is a recursive f such that for 

all x, f( x) f.. A c # f( x} E. EB. We then say A is constructively 
X 

B 
nonrecursive in B 1 1.e. ( 3 recursive f) V x( f( x} E A~ f( x} E: Ex). 

We may then want to try to find a set C such that C is r.e. 

and C is constructively nonrecursive in K. But if A and B 

are r.e. and if A is constructively nonrecursive in B, then 

B is recursive. 

Proof: Let z be given. Let B= E 
mo 

Consider the algorithm 

"Take x as input. If ~(z)= 0 give x as output." This is 

an algorithm in B and hence is AB for some n. Then we have 
n 

B B 
a partial function in B lf n such that ~ n( x) = x if z f:. B and 

is not defined if z€ B. Now n depends only on z. Given z 

12 

we can write the algorithm above and then code it by the method 

of Chapter 1 to find n. Then there is an algorithm for find-

ing n from z. Therefore there is a recursive function g· s"-ch 

that g( z)= 
B 

z¢ B and ~ if z£ B. Thus n. Now notice E = N if n 

we have shown there is a recursive g such that ~(~ )=M :if z f. B 

and ; if z E. B. Now we have a recursive f such that \f x( f( x} E A 

B B 
~f(x}£ Ex). Consider fg(z) for any z. fg(z) E:A~ f(g(z))E:Eg(z) 

by our choice of f. f( g( z) }E ~( z) ~E:( z)•N by our choice of 

B c 
g. But Eg( z)= N~ z £ B; hence we have fg( z) €. A~ z 'I B ~ z £:B . 
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c 
Then to list B we enumerate A and compute fg(z) for z=0,1,2, ... 

Then if fg(z) appears in our listing of A we put z in our list-

c c 
ing of B . Thus B is r.e. He know B is r.e. Thus B is recur-

sive. Thus by the above it is impossible to find a C that is 

nonrecursive ~n ¢ and such that K is constructively nonrecur­

sive inC because K constructively nonrecursive inC~ C ~¢. 

The Solution to Post's Problem 

Basically our idea will be to find two r.e. sets, neither 

of which is recursive in the other. This will give us at least 

four r.e. degrees. (We will later show there are at least a 

countable number of r.e. degrees.) This proof is due to Sacks 

[ 1966]. 

1-1, onto from the class of all finite sets onto N if j(~)= 0. 

Both j and -1 effective (i.e., recursive). j are 

t.et Po' p1, p2, . . . be 2, .··3, 5, ... (i.e. the primes in 

their natural order). ~ ~a, a,. Then a€N a=p0 1 ... pn··· with all but a 

finite number of the a
1 

= 0. Let (a)i=ai. Every function (a)i 

is clearly recursive and we let (O)i=O for all i. 

Definition 1: A requirement is a set (perhaps empty) of 

ordered pairs of disjoint finite sets of numbers. We write 

R:[(Fi, Hi):i£11 where I is some set for enumerating the pairs 

and where F;I\Ht=¢· 

Fj~T and ~,Bf/)T=¢• 

The set T meets R if there is i€1 such that 
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Let t: N~N. Then t enumerates requirements if for 

-1 -1 ) each sEN, j ((t(s))
0

) and j ((t(s ) 1) are disjoint finite 

sets. The requirements enumerated by tare R0 , R1, ... where 

Rk = {( j - 1( ( t( $) )0}, j -l( ( t( s) )
0

))1 ( t:( s) )
2 

=k} . We write Fs for 

j- 1(; (~~s))0 ) ·and Hs for j-
1((t(s)-)

1
) and g(s) for (t(s))

2
. Thus 

~= f<rs ,Hs) tg( •)=k J . 
A function f is recursive in a function g iff the range 

of f is recursive in the range of g. A set A is recursive enum-

erable in f if A is the range of a function recursive in f. 

Definition 2: If t enumerates requirements, we define 

the priority aet 'T of t to be as follows: 

T-:-1i' U 
0

T 
8~ s 

s=O: Then r 0=9. 
s 0: T = T 1 if (a), (b), or (c) holds. s s-

s Otherwise T = T U F . 
s s-t 

(a): There is r<s such that (b): There is r<s such that 

1) r:::-ro 1) r:>O 

2) g( r) < g( s) 2) g( r )=g( s) 

3) Fri Tr-1 3) Fri Tr-1 

4) ~ri Tr 4) Frrf: Tr 

5) Hrfl Ts_1= ¢ 5) Hrfl Ts_1= ¢ 

6) Hr I) F8 lz ¢ 

We shall see that T is , r~e. in t and meets every member of a certain 

subclass of the class of requirements enumerated by t. 

Definition 3: For each k, ~ is ~ at stage s if 

1) s> 0 
2) k = g(s) 
y) Fscf: Ts-1 
4) FSC: T - s 
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If~ is met at stages then Hs~Ts= ¢. 

Proof: Suppose ~is met at stage s. Then Fsrl T 
1 

and Fsc T . 
-K 't= s- - s 

Hence T J T 1. Then T = T 1u Fs and neither (a}, (b), or (c) 
si s- s s-

holds. Since (c) does not hold, HsnTs-l= ¢. FsnHs= ¢for all 

s. Hence HsnT = rl.. . s '1' 

Now at a later stage s than the stage r when ~ was met 

it may turn out that we will want to put something in T that 
s 

will ruin our chance of having met~ at stage r. Thus we say 

Rk is injured at stage s if there is an r< s such that 

1) ~ was met at stage r 

2) Hr () Ts-1= ¢ 

3) Hrn T r ¢ 
s 

Now if ~ is met at stage r and not injured at any later stage 

then T meets R_ • Proof: We have FrC T and . Hr () T = ¢ for all s:>r. 
-K r s -

Then FrC T since T~ T. Further Hr ll T = ¢ for if rE Hrn T, then 

r r n E H and nET which means n E H and nET for some s, i.e. 
s 

n E Hr () T for some s. But Hr n T = ¢ for s>r and also for s<r 
• s 

since s < r implies T C T s- r. 

We can now see where the difficulty lies. We must try 

to make T meet infinitely many ~·s. To do this we must put 

some things in T and keep other things out. Thus we run the 

risk of each time we put somet·hing in T to make it meet Rk we 

put something in T that injures Rj. Therefore we have defined 

T such that we have set up priorities for the ~·s so that T 

will meet enough ~'s to get the job done. 



In Definition 2, (b) holds if and only if Rg(s) was 

met at stager and was not injured at stage r+1, ... , s-1. 

Then Ts= Ts-l to avoid injuring Rg(s)" Also note nothing 

would be gained by trying to meet Rg(s} at stages for stage 

r has already taken care of fulfilling the condition such 

that Twill meet Rg(s}= Rg(r}" If {c) holds, there is no 
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hope of meeting Rg(s) at stages, so we add nothing to avoid 

injuring anrthing. Condition {a} holds if and only if g(r)< g(s} 

and Rg( r) was met at stage r < s and was not injured at stages 

r+1, ... , s-1. However if Fs is adjoined toT 1 , then R ( ) i s- g r s 

injured at step s. 
s 

We do not adjoin F · to Ts-l to meet Rg(s) 

at stage sat the cost of injuring Rg(r) at stage s. Thus we 

assign a higher priority to Rg(r) than to Rg(s) when g(r) <g(s). 

If R is injured at stage s, then there is i < k such that 
k 

Ri is met at stage s. Proof: Suppose ~ is injured at stage s. 

r Then there is r < s such that Rk was met at stage r, H n Ts-l= f1 

and Hr (\ T # fJ. Thus T :f T . 
1

. Hence 0 < r <: s, Frcf: T 
1 

Frc T , s s s- r- , - r 

Hr n T s _
1 
= 9 and Hr n F8 f fj, the latter because Hr f\ T 

8
:f ¢: and 

Hrn T = 9· If g(r)~ g(s), then either (a) or (b) holds at 
a-1 

stages and T
8

_1= Ts. · B~~ Ts_1r ~j, hence g(s)< g(r}. Now g(r} 

= k. Let i = g(s). Hence i<k. By the above Ri is met at stage 

a. 

L- 1; Suppose ·:r :< s .~ and 1\. ·is aet at stage r and at 

stage s. Then there is a u such that r ..c u < s and ~ is injured 

at stage u. 
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for otherwise (b) holds and ~would not be met at stage s. 

Since ~ is met at stage r, HrATr= ¢. Hence there is a u such 

rl"\ r 
that r<u<s and H ''Tu-l= ¢and H ()Tu#· But this means~ 

is injured at stage u. 

Lemma 2: For each k, the number of times Rk is injured 

is finite. 

Proof: Induction on k. R
0 

is never injured since there is no 

i < 0 and no Ri can be met when ~O is injured. 

~-1 are injured only a finite number of 

times and consider~· Suppose for contradiction that~ is 

injured infinitely often. Then each time ~ is injured some Ri 

such that i< k is met. Since there are only finitely many i< k 

one of these R.'s must be met infinitely often. Then by lemma 1, 
1 

this Ri is injured infinitely often, a contrediction. 

Corollary: For each k, the number of times ~ is met is finite. 

Proof: Suppose for contradiction that -~ is met infinitely 

often. Then by lemma 1, ~ is injured infinitely often, contra­

dicting lemma 2. 

We now make the following definition: For each k, Rk is 

t -dense if for each finite set L, there is an s "> 0 such that 

1) g( s)=k 
2) F~ T8 _1 
3) Hsn Ts-r= ~ 
4) L n F 8= ¢ 

Theorem 1: If t enumerates requirements, then the priority 

set T of t is r.e. in t and meets every t-dense requirement. 

Proof: Clearly T as a function of s is recursive in t. Hence 
s 

t is r.e. in t. Fix k and suppose~ is t-dense. If we can find 
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an r such that ~ is met at stage r and is not injured at any 

stage afterwards, then T meets Rk. Let i<k. By lemma 2 and its 

corollary, there is a ui such that Ri is neither injured or met 

at any stage ~ui. Let u=Max(u
0

, u1 , ... ,~). Then i(k and 

s>u means Ri is neither met nor injured at stage s. Let L = 

U (Hw U Fw). Since Rk is t-denae, there is an s>O such that 
w~u 

g( s)=k, F
8c[ Ts-l, Hsn T

8
_ 1=¢ and L f\ F

8= ~- s > u for if s<u then 

Fs~ L which implies L n F8# ¢ which contradicts ~ being t-dense. 

Hense~ is not met at stages. Since k=g(s), T = T 1 . Hence -K s s-
s F was not adjoined at stage s, for otherwise T

8
_ 1C:"T

8 
since 

Fs" T hence either (a), (b), or (c) holds at stage s. (c) 
't= s-1. 

does not hold since H8 Ts-l= ;. Suppose (a) holds. Then there 

is an r < s such that g( r) <: g( s )=k, Rg( r) is met at stage r and 

Hr n F8
.,. ¢. Since g( r) < k, Rg( r) is met for the last time before 

stage u. Hence r < u. Then HrC L. Since L n Fs=¢, Hr (1 F8
: ¢. 

But in (a) Hrn P8# ¢. Thus (a) does not hold, hence (b) holds 

at stage s. Therefore there is r<s such that g( r )=g( s )=k, 

r)'O, Rk is met at stage r and is not injured after r and before 

s. Now s > u by the definition of u. ~ is never injured after 

u. Hence T meets ~ since ~ is met at stage r and not injured 

at any later stage. 

Finally before we give the solution to Post's Problem 

we have the following lemma: Let ~ be a subset of A such that 

for all n, n~k and n e A implies n e ~· If ~AI{ computes a 
n 

value for x with computation by algorithm taking y steps with 

'A y~n, then iOn computes the same value for x. 
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We make the following notational definition: ~x is read "there 

exists x" and ~x( [x satisfies some condition] ) is "there 

exists·x such that x satisfies the given condition" 

TQeqrem 2 (Friedberg, Muchnik): There exist two r.e. 

sets such that neither is recursive in the other (and hence 

their Turing degrees are incomparable). 

Proof: 

•=0: 

S>O: 

We define T ,Fs,Hs, g(~) and 
s 

0 0 Then T
0
:F :H =¢and g(O)=O. 

Let A
0= fn:2n e T 1 7 s s- 3 

and' A!= fn:2n+l E T
8

_ 1 ~ 

t simultaneously by induction: 

Let i • ~1 if (s)0•0 J i.e. if sis odd 

L 0 otherwise l i.e. if s is even 

Let e = (a) 1 i.e. the power of 3 in the prime factorization 
of s. 

Case 1: im~s and iy~s such that 

At m 
(I) lD 5( p ) = 0 with computation by algorithm taking y steps 

T e a 

Let r be the greatest m~s such that (I) holds. 

Let P
8

: r2p:+l-i~ 

and ;:Hs= f2n+i: n~s and n ¢A!~ 

and g(a) = 2e+i+l 

Case 2: Otherwise let Fs= H8= ~and g(s) = 0 

Now let t(s) = 2j(Fs)3j(H
8

)5g(s) 

Then t enumerates requirements. Proof: We must show F8n H8= ¢. 
In Case ~ if i=O, F

8 contains an odd number while H
8 contains 

only even numbers, 

s if i=l, F contains 

s s dt Thus in case 1, F fl H = r· 

an even number while H8 contains 
only odd numbers. 

In Case 2 H8= ¢ = Fs, thus F8 n Hs =¢. 



Define T at each stage aceording to definition 2 so as to 
s 

make T = U T the priority set of t. Note that each step 
S>O S 

is effective: tisrecursive, T ~ ts r.e. and condition (I) is 

effective because there are only finitely many m!S and Y!S· 

Note also that H8 nT
8

_1• ¢for all s. Proof: H8 = 
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[2n+i: 11!.• and n rf- A! j = {2n+i: n_s and 2n+i rf- T
9

_ 1 } . 

This insures that condition (c) of definition 2 will not be met. 

Now let A 
0 = [ n: 2n e T ~ 

and A 
1 
= [ n: 2n+ 1 e T S . 

i 1 also A = U A for i=1,2. 
s~o s 

0 1 Clearly A and A are r.e. and 

Hence for each n 1s( n e Ai ~ n e Ai). 
s 

Now we show A1 is not recursive in A0
• Let e eN. We show 

Ao Ao 
XA' :/= rp e. Assume cp e is a characteristic function else there 

is nothing to prove. 

Case I: R2e+1 is t-dense. By theorem 11T meets R2e+l" 

Hence 1s( g(s}=2e+l, F8~ T, and Hsn T = ¢ ). 

Case 1 holds at stages for otherwise g(s)=Of2e+l for all e. 

* * Hence g(s) = 2e+l = 2e +i+l. Thus l = 0 and e = e = (s) 1 . 
Ao 

Hence 3r and 3y<s such that tn I (pr) = 0 with the comp-
- T e e 

utation taking y steps, F8C T, 2pr+1 e T and hence pre A1 
- e e 

Since H
8
nT = ¢, n's and n ¢.A~~ 2n ¢. T ==1) n ¢ A0 

and hence n<s and n e A
0 

...:..... n e A0
• 

- -y s 
Ao 

Since y~s, 97 e(p:) = 0 by the lemma just preceeding this 
Ao Ao 

theorea. So cp e -f XA 1 for C(J e ( p:) • 0 # 1 = XA ( p:} . 

Case II: R2e+l is not t-dense. Then 3L a finite set such that 

for all s> 0 either g( s) !: 2e+l or F8~ Ts-l or L ('I Fsf: ¢. 

(Recall that HsnTs_1= ¢for all s.) We show that if m>O 



21 

2pm+l is · greater ' than every 1 e L, ·then 
e 

1 A0 A0 

i} p:C A and ii) CfJ e ( p:~ :f 0. This shows XA # fj' e. 

m Let m> 0 be such that 2p +1 is greater than every 1 E L. 
e 

Suppose for contradiction that pmE A1 Then 2pm+1 e T. 
e e 

Let s>O such that 2pmE T -T 
1

. Then Fs = [2pm+l l and 
e s s- e ..3' 

T8= ,Ts_ 1 U Fs Hence g( s) = 2e+l, F~i· Ts-l' .~ and LnFs=¢; 

but this contradicts the fact that K2e+l is not t-dense. 
Ao 

Now for ii).Suppose for contradiction that £n (pm)=O. T e · e 

Let y be the number of steps in the computation. Now 

chooses large enough so that m~s and y~s and e = (s) 1 

and i = 0. Then case 1 holds at stage s. Then Fs= [2p:+l} 

where r~m and g(s) = 2e+l. Since r~m we have Fs~ Ts-l by 

i). For if F8~ Ts-l, 2p: +1 e T
8

_ 1 , p: e A~ A 
1

, but if 

2plll+l is greater than leL for each 1, and r~m, then 
e 

2pr+l is greater than leL for each 1 and hence by i) e 

~;. 1 Pe • ,a contradiction. Thus g( s) = 2e+l, Fs~ T 
s-1 

and 

L () Fs= ~· But all this is impossible. 

1 0 0 1 Thus A i A . Similarly A i A . This concludes the proof. 

Corollary (Solution to Post's Problem}: There exist more than 

two r.e. degrees. 

Proof: 
- -o -1 -

We now have¢, A, A, and .K, all distinct since¢ and 

K are upper and lower bounds. 

Now let us take an intuitive look at what we have done. 

What we want to do is define two sets A0 and A1, neither of 

which is recursive in the other. To do this we proceed by 

1 
stages. At stage s, if s is even, we work on A to prevent 



0 0 it from being recursive in A . If s is odd, we work on A 

1 
to prevent it from being recursive in A . Let us assume 

s is even. Now we find the power of 3 in the prime fac-

torization of s and call this number e. We now want to 
1 1c A0 

put something in A or A that will prevent sP from being 
e 

1 A0 

the characteristic function of A . We use ~ e since e will 
Ao 

take on every value inN infinitely many times and hence~e 

will be worked on infinitely o.ften~ But we don't know what 

0 
A is. However, we do have the lemma just preceding the 

theorem. 0 So we have to construct A when we are working on 

it, in accordance with the hypothesis of this lemma. Then if 
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0 0 ~ ~ A· is what we have constructed of A at stage s t/J and f/J 8 
s ' T e r e 

will compute the same value for a given x, provided the com-

putation takes no more than s steps. So now we want to put 

1 A0 

something in A, call it a, that will prevent 91es from being 

XA1· We; have to come up with an effective procedure for trying 

to find this x. We do this by looking at the e th prime, p e' 
Ao 

and seeing if there is an m ~ s such that I' A S( pm)= 0 in not re e 

more than s steps. Since there are only finitely many m ~ s, 

this procedure is effective. The reason for using this pro-

cedure will become clear later on. Now say we find an m ~ s such 

A
0 

m m 1 m) A
0 

m) that t/J s( p )= 0. Then if we put p in A , XA1· ( p : = 1, 0:: f/J S( p . 
Tee e e Tee 

But we can't just throw numbers into A1 whenever we feel like it. 

We want A1 to be constructed in accordance with the lemma, so that 

the odd stages will be effective as well. So we pick the largest 

A
0 

m 
m such that {f) s(p )= 0 in not more than a steps and call it r. r e e 



r 1 i Fs d · Hs i 11 h b We put 2p + n an 1n we put tw ce a t e num ers 
e 

0 less than or equal to s that are not already in A . We then 
s 

make (Fs, Hs) an element of the requirement R
2

e+
1

. Now if 

A0 m 
there is nom such that tD S(p )= 0 in not more than s steps, 

T e e 

we make F8= H
8= ~and put (F

8
, H

8
) in the requirement R0 . 

Then we define a function t such that t enumerates these re-
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quirements. Then by using the priority set T of t, we can 

effectively decide what goes into A1 and A0 so that our t-dense 

requirements are met. Now notice if a requirement R2e+l is 

r 0 A~( r ( met, there is a p in A such that <f · p )= 0 for some s by 
e e e 

0 
s 0 As r A0 r 

means of F s; T) _!nd A is constructed such that cp e ( pe)= <p e ( pe) 

(This is what Case I: R2e+1 is t-dense, proves). 

If a requirement R
2

e+
1 

is not met, then we want 
1c Ao 

to have put something in A so that ~ e is not ~~· Now R2e+l 

is not t-dense if it is not met. So we have a finite set L 
Ao 

such that at each stage s either we are not working with 90 es 

(i.e., g( s); 2e+ 1) or F~ T
8

_ 1 or L nrs;·~. We can find m 

such that 2Pm+ 1 is greater than any lE L, and hence if we can 
e 

show Fs= { 2p:+ 1] for some s, L () F8= f!. This is the reason 
0 

for using numbers of the form 2p:+ 1 in connection with cp !s. 

The exponent m enables us to find a large enough number to 

show that if R
2

e+1 is not t-dense then g(s)= 2e+ 1 implies 

Fsc T since L n Fs = d. By assuming pme E A 1 we show that - s-1 r 

F~ Ts_1 and g(s)= 2e+ 1 for somes. Similarly we show that 
0 

l/JA ( pm)= 0 implies g( s)= 2e+ 1 and Fsr+ T 
1

. These two 
T e e '1= s-

, , Ao 
contradictions give us p~ A1 and lD (pm)~ 0. Then we are e T e e r 
done. 



Chapter 4: Further examples of the Priority Argument 

First we make the following definitions: Qn is the set 

[ 0,1, ... ,n-1J. r is the function from N onto Q such that 
n n 

r (s) is the remainder when sis divided by n. 
n 

porollary to the Friedberg-Muchnik Theorem: There 

exists •countably infinite family of r.e. degrees such that any 

two members of this family are incomparable with respect to ~-

Proof: Assume no such family has more than h-1 elements. To 

show there is such a family with h elements. 

We define T , Fs, Hs, g(s) and t simultaneously by induction: 
s 

0 0 ) s = 0: Then T = F = H = ~ and g( 0 = 0. 
0 

s > O: Let A!= [n:hn+i E Ts_1 ] for each i E Qh. 

Let e = ( s)f 

Case 1: 3m<s and 3y<s such that 
- · r ·( 8:)-

(I) 91!s (p:) ~ 0 with the computation taking y steps. 

Let r be the greatest m~s such that (I) holds. 

Let Fs= { ltp: +i : i E Qh and i#rh(s)} 

and Hs= [hn+rh(s) : n_ss and n E1- A:h( s)J 

and g(s) = he+rh(s)+1. 

Case 2: Otherwise let Fs=Hs=¢ and g(s) = 0. 

Now let t(s) • 2j(.Fs)3j(Hs)5g(s)_ Then as before t enumerates 

requirements. Again define T at each stage so as to make 
s 

T = U T the priority set of t. Each step is effective and 
S2_0 s 

also Hsf1 T
8

_ 1= ~ for alL-s. Let A
1= [ n: hn+i e: T] = Us:)oA!, 

for all i EQh. r.e. as before. To show Ai is not 

recursive in Aj we need only notational changes from theorem 2. 
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The following theorem is a theorem of Sacks [1966]: 

Theorem 3: . Let D be r.e. but not recursive. Then there exist 

two sets n
0 

and n1 such that D
0
U D1= D, D

0
nD1= ¢, Df Di for i=l,2. 

Proof: Since Dis r.e., D = E for some n. Define f to be such 
n 

that f( x) = rr n( x) if there is no y < X such that f( y )= r n( x) 

l~ndefined otherwise. 

Clearly f is recursive and enumerates D without repitions. 

Let d( s, n) = fl if there is k..c s such that f( k) = n 

0 otherwise 

Then !~,n'oO d( s, n) z ~( n). 

Before we proceed further we make the following definition: 

A 
Y?e(x) = z has computation number y if y = Max(the number of steps 

in the computation, the largest number that appears in doing the 

computation .. 1).This notion is well-defined since we arrive at the 

out ~u.:t z in a finite number of steps and each step has only a . 

finite number of symbols (and hence numbers) in it. 

We will now define atx(6-) recursive functions simult-

aneously by induction. At each stage s of the induction we 

will define d(i,s,n), t(i,s), y(i,s,n,e), P(i,s,n,e), m(i,s,e) 

and K{i,s,e) for all i<2 and all nand all e. The purpose of 

stages is to put f(s) in either D
0 

or n
1

,but not in both. 

Thus at stages we will set either d(O,s,f(s)) or d(l,s,f(s)) 

equal to 1 and the other to 0. 

Stage &=0: We set d(l,O,n) = 0 for all n f f(s) and 

d(l,O,f(O)) = 1. We set P{i,O,n,e) = 2, t(i,O) = y(i,O,n,e)=l 

and d(O,O,n) = m(i,O,e) = K(i,O,e) = 0 for all i<2, all e and n. 
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Stage s? 0: For each i 2, let 

t( i' s) = [the least e~s 

s+l otherwise 

such that f(s)~K(i,s-l,e) if such an 
e exists 

Let z(s) = 1 if t(l,s) > t(O,s) and let z(s) = 0 otherwise. 

Thus t(z(s),s) ~ t(l-z(s),s). We set 

d(i,s,n) = [1 if i = z(s) and n = f(s) 

d(i,s-l,n) otherwise 

for all i<2 and all n. 

We make D~ the set such that its characteristic function is d(i,s,n). 

We now define y(i,s,n,e) and P(i,s,n,e) for i<2 and for all nand e: 

If )y~s such that 
Dr 

(I) f(y) =rand ~ ei(n) is defined and has computation 

number y, 

we let y(i,s,n,e) be the least y such that (I) holds and 
r 

let P(i,s,n,e) = y?~i(n) where r=f(y(i,s,n 1 e)). 

Otherwise let y(i,s,n,e) = s+1 and P(i,s,n,e) • s+2. 

Before we define m(i,s,e) we note that for all i<2 and for all e 

3tss(d(s,t) ~ P(i,s,t,e) ). 

This is clear since d(s,t) is 0 or 1 for all t and P(O,s,s,e) = 

P(1,s,s,e) = s+2 for all .e because s appears in the computation 
r 

of r ~i( s) and s~. Therefore we define m( i,s,e) to be the 

least t such that d(s,t) ~ ~i,s,t,e) for i<2 and for all e. 

We define K(i,s,e) for i<2 and all e such that 

K( i, s, e) =rK(i,s-l,e) if for all n, n<m(i,s,e) implies 
y(i,s,n,e) ~ K(i,s,e) 

otherwise the least t such that for all n, 
n<m(i,s,e) implies y(i,s,n,e)< t 



We now list two remarks which will be needed in letmnas 2 and 4: 

Rl: For all i<2 for all sand~ K(i,s+l,e) ~ K(i,s,e) 

R2: ·For all i< 2 and '.fol' all s and e 
n <m( i,s,e) implies y( i,s,n,e) : K( i,s,e} 

Both of these remarks are clearly true from the definition of K. 

The six functions we have defined above are recursive. 

Before we proceed with the rigorous, mathematical argument, 

let us consider the intutuve content of the above construction. 

Since D is r.e. our method is to enumerate D without repition by 

means of a recursive function f. At stage s we enumerate the 

th 
s member of D and place it in just one of the sets D

0 
or D1; 

we choose between D
0 

and D
1 

according to a criterion based sole~y 

on our desire that D not be recursive in Di for i<2. The func­

tions t, y,, P ·;· m, and K serve to establish t~is criterion. The 

value of z(s) at s>O is 0 or 1 according to whether we put the 

th 
s member of Din D

0 
or D1 . 

In order that Di be recursive enumerable the above func~ 

tions must be recursive. Two obstacles separate us from this 

objective. First D is not recursive so when we try to make 

some estimate at stage s of our progress towards our goal of 

defining Di such that D i Di, we must make this estimate with­

out any perfect knowledge of the membership of D. But since 

Dis r.e., we can define a function d(s,n) which is recursive 

and approaches JD as s increases without bound. 

The second obstacle consists of our inability to know 

at stage s if we have ''met" some "requirements" once and for 



all. (The words in quotation marks are used in their intuitive 

sense rather than the strict mathematical sense of Chapter 3.) 

Our 'requirements" are: ~# <p~i for i<2 and for all e>O. It 

may appear that a "requirement" is "met" at stage s, but at a 

later stage, a:change in the membership of Di or in our approx­

imation of the membership of D may alter things completely. Thus 

there are conflicting "requirements" that must be "met" and we 

are forced to make repeated attempts to "meet" them with the 

hope that eventually each of tham will be "met." 

For each i<2 and e?_O, let a2e+i denote the "requirement" 

that xnf)P:i. Our system of priorities ia the same as that of 

Chapter 3, i.e. R has higher priority than R if n<m. At stage n m 

s we examine all deductions whose , ~ computation ntttnbers are not 

greater than s in order to determine as far as possible the 

th 
result of applying thee partial function recursive in Di. 

The function P (as a function of n) is merely an approximation 

of ·Cf ~i at stage s. We compare this approximation with d( s, n) 

in order to define an initial segment of natural numbers on 

D 
which the functions r ei and ~ appear to agree at stage s; the 

length of this segment is m(i,s,e}. The value of K(i,s,e) is 

greater than or equal to the computation number of the deduction 

needed to establish the apparent equality of r~i and ~ for 

a 11 n < m( i , s , e) . 

When we choose between D
0 

and D
1 

at stage s, our choice 

is motivated by a desire to preserve as far as possible the 

D apparent equality between rei and ~ noted at stage s-1. If 



) Di f( a)>K( i, s-1, · e , then the apparent equality between ~ e ( n} 

and ~( n} for all n < m( i, s-1, e) will not be disturbed if f( s) 

ia added to Di. This is so because f(a) is greater than the 

computation nu.ber of any deduction relevant to this apparent 

equality, and hence by the definition of the computation number, 

the addition of f(s) to Di will not affect any such deduction. 

If f(a} is smaller than K(i, a-1, e), than we arbitrarily regard 

the addition of f( s) to D i at stage.-.·s :::as an "injury" to "require­

ment" R
2

e+l" The value of t(i,s) is the least e less than or 

equal to s such that R2e+l will be "injured" if f(s) is put in 

Di; if no such e exists, then t{ i, s)=s+1. Thus, R2t( i, s)+l iS. 

It " " " the highest priority requirement that will be injured (if any) 

when f(s) is added to Di. The function z is defined in such a 

manner that when we are faced with the alternatives of "injuring" 

R or R s)+l., we choose to "injure" the "requirement" 
2t( 0' s) 2t( 1 ' 

of lower priority. 

Thus it follows that we will never "injure" R that we 
o' 

will "injure" R
1 

only ··to avo:id ' '·'injuring" R
0

, and in general we 

will "injure" R r. at stage a only to avoid "injuring" R for 
m n 

some n < m. R2e+i will be "met" if the set { K( i, s, e) : s~O} 

is finite, because if the latter set is finite, then x
0
(n) and 

C(J~~(n) will appear to be equal for only finitely many n during 

the course of the construction, and hence at the end of the con­

struction there will be ann such that either ~~i(n) is unde­

fined or is not equal to ~(n). 

Thus, what we have left to show is that for each e~O 
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(a) R
2

e+i is "injured" only infinitely often, and (b) the set 

{K(i, s, e) s~o] isfinite(i.e.R
2
e+iismet). Wewilldo 

this by means of induction (in the form of an infinite descent). 

Then we let x_ ( )=tf~ d(i, s, n) and we are done, since --ui n ,. s~c.0 

at each stages, either d(O,s,f(n)) or d(l,s,f(s)) was set equal 

For the sake of contradiction we assume there Is an i < 2 

such that {b) above is false. Let e* be the least e such that 

the set [K(i,s,e): i~2 and s~o} is '·' infintte. Let i* be the 

least i such that [ K(i,s,e*) : s~o] is infinite. Our objec­

tive is to show this assumption leads to YD recursive. First 

we show R2e*+i* is injured only finitely often. 

Lemma 1: There is an s• such that for all s~s' either 

z( s) = l:.-.i* or e*< t{ i*, s). 

Proof: Suppose there are infitely many s such that z(s) = i* 

and e~t( i*, s). Let S be an infinite set such that for all s e S',' 

sLe*~< z( a).i* ·-and e*~t( i*, s). Recall that t( z( s), s)/ t( 1-z( s), s) 

for all PO. Then for each s e S, e*,Zt(i*,s).2:_t(l-i*,s)2_0. 

Since Sis infinite, there must be an infinite subset Rof ' S and 

an e** such that t( i*, s) = e** ~ 0 . for all s E R. Thus we have 

s~ e* ~ t( i*, s) ~ t( 1-i*, s) = e** for all s E R. Thus f( s) <: 

K(l-i*,s-l,e**). But then {K(l-i*,s-l,e**): s E RJ is infinite 

since the set {f(s): s=a) is infinite (recall f is 1-1}. It 

follows from the definition of e* and the fact that e** ~ e*, 

that e**= e*. Thus the set { K(l-i*,s,e~: s~oJ is infinite 

since s E R implies s~ 0. This means 1-1*> i* and thus i* = 0. 
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But then for any s E R £; S we have. e* = t( 0, s) = t( 1, s) = e** and 

z( s) = i * = 0. This last is impossible since z( s) = 1 if 

t(l,s) = t(O,s) and s>O. 

Now let s* be the least s' satisfying lemma 1. Then we 

are ready to prove the following lemma: 

Lemma 2: If s~s* and n<.m(i*,s,e*), then d(i*,s,j) = 

d( i*,s' ,j) for all j and s' such that j < y( i*,s,n,e*) and s' '7 s. 

Proof: Let s and n be such that s ~ s* and n <.m( i*, s, e*). Our 

proof proceeds by induction on s' ~ s. The induction hypothesis 

iss' 2:s and d(i*,s,j) =d(i*,s',j) for all j.(y(i*,s,n,e*). 

Since s' 2:_s* we have ei~her z( s'+l) = 1-i*··or e*< t( i*,s'+l) by 

leama 1. If z(s'+1)=1-i*, then d(i*,s'+l,j)=d(i*,s',j) for 

all j. Suppose then that e*< t( i*, s'+l). Then e*< t( i*, s'+l) = 

[the least e~s•+1 such that f(s'+1)<K(i*,s',e)]. Thus 

f(s'+1)~K(i*,s' ,e*) since e*< s*< s'+1. By remark Rl, K(i*,s',e*) 

~K(i,s,e*) since s' ~s, and by remark R2, K(i*,s,e*) ~y(i*,s,n,e*) 

since n<.m(i*,s,n,e*). But then f(s•+l) ~y(i*,s,n,e*). Then by 

the definition of ; d ~ d( i* ,' s'+1, j) = d( i*, s', j) for all j such 

that j<y(i*,s,n,e*) 

Lemma 3: If s ~ s* and n-=::: m( i, s, e*), then y( i *, s, n, e*) :r 

y( i *, s' , n, e*) ~ s for all s' > s . 

Proof: Let s,n, and s' be such that s• ~·~s* and n<m(i*,s,e*). 

Then d(s,n)=P(i*,s,n,e*} by definition of P. Since d(s,n)<s+2, 
nf~y(i*,s,n,e*)) 

we have Jl(i*,s,n, e*) = StJ e* (n) andy( i*,s,n,e*) < s. 

But then y( i*, a. n, e)= the least y ~ s such that 
Df(y) 

(II) r ei• ( n) is defined and h .. c0111putation number y. 

II 
I, 
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By, lemma 2 d(i*,s,j)=d(i*,s',j) for all j<y(i*,s,n,e*); hence, 

Df( Y) is the same for all y suchtt•-t ;y~s' , hence the least y ~ s' i* 

such that (II) is the same as the least y ~ s such that (II), 

thus y( i *, s, n, e*) = y( i *, s', n, e*) . 

Lemma 4: [m(i*,s,e*) : s~oJ is infinite. 

Proof: Suppose this set is finite. Let m' be the largest mem-

her of it. Let s • be such that s'>s* and d(s,n) = ~(n) for 

all s and n such that s>s' and n<m'. Let m" be the greatest 

member of { m( i*, s, e*) : s~s* ~ . Let s" be such that s">s' 

and m( i*, s", e*) = m"<m'. We now show by induction on s~s" that 

m( i*,s,e*) = m" and K( i*, s, e*) =K( i*, s", e*) for all s~s". Suppose 

then that s2_s", m(i*,s,e*) = m" and K(i*,s,e*)~(i*,s",e*). By 

lenna 3.> y( i*,s,n,e*) = y( i*,s,n,e*), since s~s"~s'?:s*. This 

means that P(i*,s,n,e*) =P(i*,s+l,n,e*) =d(s,n) for all 

n...c:m{i*,s,e*). But d(s+l,n)=d(s,n)=~(n} for all n~m"~m•, 

since s>s'. Hence P(i*,s+l,n,e*} =d(s+l,n) for all n<m" = 

m( i*,s,e*}, and thus m" ~ m( i*,s+l,e*}. It follows from the 

definition of m" that m(i*,s+l,e*) = m". But then by remark 

R2, y(i*,s,n,e*) =y(i*,s+l,n,e*) ~K(i*,s,e*) for all n<m(i*,s+l,e*) 

" ( i* *) = m = m , s, e • From this last and the definition of K, it 

is clear that K(i*,s,e*) =K(i*,s",e*) for all s~s"; but this 

is a contradiction since by definition of e* and i* ~K(i* , s,e*): 

s ~ 0 J is infinite. 

Lemma 5: If s> s* and n<m(i*,s,e*), then ~(n) = 

P( i *, s, n, e*). 

Proof: Let s>-s* and n<m(i*,s,e*). By lemma 3, y(i*,s,n,e*) = 

y(i*,s',n,e*)~s for all s• 2'S· By lenwna 4, there is s"::::s such 
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that m( i*, s" ,e*) ~m( i*, s,e*) and d( s" ,n) = !:.:d( s" ,n) = ~( n). 
oflY( i *, s" , n, e*) ) 

But then d( s",n) =P(i*,s",n,e*) = f(Je* (n), since 

since n<m(i*,s",e*) and y(i*,s",n,e*) ~ s ~ s" . Thus 

nf~y(i*,s",n,e*)) ' nfly(i*,s,n,e*)) 
~( n) = f e! ( n) = 9' e! ( n) = 
P(i*,s,n,e*) since y(i*,s",n,e*) = y(i*,s,n,e*) ~ s. 

Let t( n) be the least s such that s ~ s* and n < m( i*, s, e*); 

by lemma 4, t( n) is defined for all n. By lemma 5, · ~(\\) , ... 

P(i*,t(n),n,e*) for all n. Since m(i*,s,e) and P(i*,s,n,e*) are 

both recursive, t is recursive; hence, ~ is recursive which is 

a contradiction. Thus [K(i,s,e) : s~o] is finite for i~2 and all e. 

Now fix i and e and let m be the largest member of 

{K< i, s, e) : s~O J . We wish to show there is an n < m such that 

~ : 1(n) r XD(n). Suppose the contrary. Then let y{n) be the 

computation number of r ~i( n). :. ~ y is recursive and y:; ~i( n)=~( n) 

for all n~m. Let y be the largest member of fy(n): n~mJ. 

Let s be such that y~ s, d( s,n) = ~( n) and d( i, s, j) = ~ ( j) for 
i 

all n~m and j~y . Then y(i,s,n,e)=y(n)~s for all n~m. Thus 

0 f(y(i,s,n,e}) 0f(y(n)) D 
P( i, s, n, e) = r e i . ( n) = f e i ( n) = fJ e i( n) = ~ ( n) = 

d(s,n) for all n~m. This means m<m(i,s,e) by the definition 

of the function m. By remark R2, y( m) = y( i, s, m, e)~ K( i, s, e). 

But K( i, s, e)~ m by the definition of m. Hence, y( m) !m. But 

. D· 
this is absurd since y( m) = the computation number of (jJ e 1 ( m), 

and it must be greater than m. 

This concludes the proof of theorem 3. 

Corollary 1: Let D be r i e.' hut not recursive. Then there are two 



Proof: Suppose the contrary. By using Theorem 3, we get 

Di ~ Dl-i for some i=O, 1. We may assume n0 ~ n1 . Since D::D0 U D1, 

D~D0vn1 . Now n0un1 ~D1 . Proof: We want to know if nf..D
0

uD
1

. 

We ask if n £ n
0

. We: can find this out from n
1 

since D
0 
~ D

1
. 

We also ask if n E n1 . We can find this out from D1 . If n €. D 
0 

or nc:: n
1

, then n€ n
0 

un1 . Hence D
0 

v D
1 
~ D

1
. Therefore 

D ~ D
0 

u n1 ~ D1 
which contradicts theorem 3. Hence D if_ Dl-i 

for i <. 2. 

Theorem 3 and corollary 1 may be stated together as 

follows: Each non-recursive, recursively enumerable set D is 

the union of two disjoint, recursively enumerable sets whose 

degrees are less than the degree of D and whose degrees are 

incomparable. 

Corollary 2i There is no least non-recursive r.e. 

degree. 

Proof: Assume that there is one and that it is A. But A is 

the union of two sets whose degrees are less than that of A. 

We conclude with another theorem of Sacks [1964). The 

proof of this theorem has the interesting feature that each 

"requirement" may be "injured" infinitely often. Nonetheless 

we still manage to "meet" each requirement. The difference is 

the consequence of the fact that before, we only dealt with 

finite, initial segments of functiens, while here we are forced 

to deal directly with entire functions. 

We are given a non-recursive r.e. set B, and we wish to 

find an r. e. set D such that D f B but B~ D. Since B is to be 
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recursive in D, we are forced to add many members of B to D in 

complete disregard of all priorities. Thus, even the highest 

priority' "requirement" may be "injured" infinitely often. 

Theorem 4: If~ and.£ are r.e. degrees such that~<.£, 

then there exists a recursively enumerable degree ~ such that 

Proof: Let f and g be l'-l.recursive functions which enumerate the 

sets B and C without repitions such that B:b:·and C=c. We define 

b( s, n) =n if ~t<s( f( t) = n) 
otherwise 

c(s,n)=n if 1t<s(g(t) = n) 
otherwise 

Then l\~ b(s,n) exists for all nand is 1-~(n). Similarly 

lim c(s,n) = l+Xc(n). Let k be a recursive function such that, 
s~oD 

for each s, s~k(s)<k(s+l). We define three recursive functions: 

1) yb(s,n,e) =rthe least Y<B such ' that yo![s,y)(n) 

utation number y, if one exists 

k(s) otherwise, 

where B[ s,y l = {j<y b( s, j) = 0 J 

has comp-

2) h( 0, n, e) = 0 and h( s+l, n, e) = h( s, n, e)+sg( I yb( s+l, n, e)-
yb(s,n,e)l) 

3) t( s, i, e) = ~ j~ i h( s, j, e) . 

We definefourrecursive functions y(s,n,e), m(s,e), r(s,n,e) and 

d(s,n) simultaneously by induction on s. The desired degree~ 

wi 11 be the degree of the set [ n : there : is an s such that d( s, n)=O] . 

s = 0: We set y(O,n,e) =m(O,e) =0 and r(O,n,e) =d(O,n) = 1 

for all n and e, except that d( 0, p( f( 0), 1)) = 0 where p( i ,m) = 

p~m (Recall pi is the ith prime.} 



s > O: We set 

y(s,n,e) = 1r

0

the least Y<s such that Y?~[s-l,y](n) has 

computation number y, if one exists 

otherwise. 

We defineU(y(s,n,e)) .=[f ~[s-l,y)(n) if y(s,n,e) ~0 

undefined otherwise. 

The definition of m(s,e} has two casas: 

Case ml: ~n<m(s-l,e) such that 

c( s, n} f U( y( s , n, e) ) and y( s, n, e) " y( s -1 , n, e) . 

Then,we set m(s,e) equal to the least such n. 

Case m2: Otherwise. Then we set m(s,e) equal to the 

least n such that m( s-l,e)<n<2m( s~l,e)+s 

and ~t~n(c(s,t)~U(y(s,t,e)), if such ann 

exists, otherwise m( s, e) = m( s-1, e)+s. 
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Let p(e,i,m)=p(e,p(i,m)). We define r(s,n,e) and d(s,p(e,i,m)) 

for all e,n,i,and m by a simultaneous induction on e. First 

we set d(s,p(f(s),l)) = 0. 

r( s,n,e) = 0 if ~i<e~t~n1m[p( i,m) < y( s, t,e) and 

d( s,p( i,m))~d( s-l,p( i,m))] 

0 if ~ t ~ n [ p( f( s) , 1 ) < y( s , t , e) ) 

1 otherwise. 

We have three casas for d(s,p(e,i,m)): 

Case dl: t( s, i, e)> m. We set 

· · ... , _.. · ,·-: .. 
. ~ {\; 

d( s, p( e, i, m) ) = d( s -1, p( e, i , m) ) if 
1u~a1v<m( s, u) [ r( s, v, u) = 1 
and p( e, i , m) < y( s , v, u) ] 

0 otherwise. 
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Case d2: t( s , i , e) = m. We set 

d( s, p( e, i, m)) = 0 if c( s, i) = 2 
and for all'j i d(s-l,j)= 

U( y ( s, j , e) ) 
and it fs not the case 

that ~u e~v m(s,u) such 
that~ r(;,v,u)=1 and 

p(e,i,m) y( s, v, u} 

d( s -1, p( e, i, m)) otherwise. 

Case d3: t( s , i , e) < m . We set 

d( s , p( e, i , m) ) = d( s -1 , p(• e, i , m} ) . 

The construction is concluded by setting d( s,w) = d( s-l,w) for 

all w not equal to p(f(s),1) or p(e,i,m) for some e, i and m. 

Let d( n) = ~~!!, d( s, n) for each n. Let D be the set whose charac-

teristic function is 1-d; Dis recursively enumerable since n£D 

if and only if ~s( d( s,n) = 0). We make two remarks which will 

be needed later: 

N1: For all. s,, n and ·e, r( s,n,e) =0 implies r( s , n+ 1 , e) = 0 

N2: For all s, n and e, y( s,n,e) =0 implies n~m(s,e)). 

(N2 can be seen by considering cases in the definition of m(s,e).) 

Lemma 1: Let y( s, n,e) > 0, m( s, e)> n and p( f( s), 1) ~ y( s, t, e) 

for all t < n. Let d{ s,p( i,m)):d( s-l,p( i,m)) for all i, t and m 

such that i<e, t~n and p(i,m)<y(s,t,e). Then y(s,n,e) = 
y(s+l,n,e) and m(s+1,e)> n. 

Proof: Since y(s,n,e)>O, we have that it is the computation 

b f D[s,y(s,n,e)(] ) 
num er o CfJ e n . If d(s,J}=d(s-1,j) for all j<y(s,n,e), 

then y( s+1, n, e)= y( s, n, e). The hypothesis of our lemma tells us 

that r( s, n, e)= 1. But then it follows from the definition of 

d(s,j) that d{s,j)=d{s-l,j) for all J<y(s,n,e), since m(s,e)>n. 



Note that Nl makes clear that the above argument also 

works for any t < n. Thus we have for all t < n that y( s, t, e) = 

y(s+l,t,e). Suppose m(s+l,e}~n. Then m(s+l,e)<m(s,e}, and 

Case ml of the definition of m(s+l,e) holds. But then we have 

a t ( namely,m( s+l, e)) such that t ~ n and y( s, t, e)# y( s+l, t, e). 

lim ( ) For each e, we say that e is stable if s~~ y s,n,e 

exists and is postive for all n. Since there are infinitely 

many e that are not numbers of systems of equations, there are 

infinitely many unstable e. Let {e
0
< e

1
< e

2 
... ] be the set of 

all nonstable e. For each j, let n. be the least n such that 
J 

lim ( ) s~~ y s,n,ej either does not exist or is zero. Lerm:na 2 is 

our basic combinatorial principle. 

Lemma 2: For each k and V
1 

there is an s > v such that 

for all j< kJm(s,ej}~nj or r{s,nj,ej) =0 or y(s,nj,ej} =0. 

Proof: Fix k and v. We suppose there is no s with the desired 

properties and then define an infinite descending sequence of 

natural numbers. 

We propose the following system of equations as a means of 

defining two func~ions,S(t} and M(t}, simultaneously by 

induction: 

s(o) = v 

M(t) =the least Y< k such that nj<m(S(t),ej) 

and r(S(t),nj,ej} = 1 

and y(S(t),nj,ej) > 0 

S( t+l) = the least s such that ~m( s ~ S( t} and m <:. y( S( t), ~( t), ~( t)) 

and d(s,m) I d(S(t)-l,m)). 
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Clearly S( 0) ~ v. Suppose t ~ 0, S( t) is well-defined and S( t) ~ v. 

Then M(t)<k, since we have supposed the lemma to be false. Thus 

l~m 
y( S( t), ~( t), ~ t)) > 0 and s oo y( s, ~( t), ~( t)) does not exist 

or does equal 0. Then there must be an s> S(t} such that 

m<y(S(t},~t)'~(t)) and d(s-l,m} I= d(S(t}-l,m}. But then 

S( t+l) is well-defined and S( t+l) ~ v. 

For each t ~ 0, let u( t+l) be the least m such that 

d(S(t)-l,m) r d(S(t+l),m). Fix t::>-0. We show u(t+l)<u(t). 

Since we know u( t+l) <: y( S( t), ~( t), ~ t)), it sufices to show 

y( S( t), \f( t), ~( t)) ~ u( t). It follows from the definition of 

S that d(w,m) •d(S(t-1)-l,m) whenever S(t)>w~S(t-1) and 

m < y( S( t-1) ,~ t-1), ~( t-1)). Consequently, d( (t), u( t)) f 

d( S( t) -1, u( t)). First suppose u( t) = p( f( S( t)), 1). Then 

y( S( t), ~( t), ~( 't)) ~ u( t), since r( S( t), 'lf( t), ~( t)) = 1. Now 

suppose u(t):=p(i,f,m) for some i,f, and m. Let s=S(t), 

n = ~( t) and e = ~( t). If i~ e, then the definition of r tells 

us that y( s, n, e)~ u( t), since r( s, n, e)= 1. If, i ~ e, the defini-

tion of d tells ua that y( s, n, e)< u( t), since n < m( s, e), r( s, n, e)=l 

and d(s,u(t)), d(s-l,u(t)}. 

Let us consider the following sentences: 

A(e): If e is stable, then the set [m~s,e): s~oJ is finite. 

B( e): The set [m: d( p:)= 01 is recursive in B. 

We will prove A(e) and B(e) are true for all e by means of a 

simultaneous induction on e. From A(e) true for all e it will 

follow that £t ~;from B(e), that ~i ~· 

Lemma 3: For all i <:e B( i) true iaplies that A( e) is true. 



40 

Proof: We know~ i ~· We suppose that B(i) is true for each i<e 

and that A('e) is false, and we show ~ .::_ ~. Thus the set 

r: , lim ( ) l. m( s,e): s~OJ is infinite, and for each n, s~e0 y s,n,e exists 

and is positive. Let R(n,s) = 1 if m{s,e) n,and for all i, t 

and m, p( i,m) < y( s, t, e) and i < e and t~n implies that d( p( i,m)) 

=d(s-l,p(i,m)), and for all , z and tJz e Band p(z,l)..Cy(s,t,e) 

and t~n implies that d(s-l,p(z,l)) = 0; and equal 0 otherwise. 

(Recall that zeB if and only if d(p(z,l))=O.) Since B(i) is 

true for all i<e, it follows that R is recursive in B. Since 

[ I lim ( ) the set m(s,e}:s::::_OJ is infinite, and since s~~Y s,n,e 

exists and is positive for each n, it follows that for all n 

there is an s such that R( n, s) = 1. Let w( n) be the least s 

such that R(n,s)=l. Then w is recursive in B, and for each n, 

w(n+l)~w(n). Pix n. We :show l~y(s,n,e)==y(w(n),n,e}. Let 

s be such that s?. w( n} and y( w( n), n, e) a-:y( s, n, e) and R( n, s} = 1. 

Since m(s,e}>n, it follows from remark N2 that y(a,t,e)>O for 

all t ~ n. We know f enumerates B without repitions. It follows 

from the definition of R that p(f(s},l) >y(s,t,e) for all t<n. - -

But then lemma 1 tells us that y( s+l,t,e} =Y( s,t,e) for all t~n, 

and that m( s+l, e)> n. Thus y( w( n}, n, e) = y( s+l, n, e) and 

R( n, s+l) z •1. It follows that li~ y( s, n, e) = y( w( n), n, e). Finally 

we show 1~ c( s, n) • U( y( w( n), n, e)) for all n. If this last is 

true, then C is recursive in B, since [l\~ c( s, n~-1 is the charac­

teristic function of C; and since w is recursive in B. Fix n 

and suppose lim c{s,n), U(y(w(n),n,e)). There must be an s* 
s~oo 

such that for all s~s*, c(s,n) = ~~'! c(s,n) 1 U(y(w(n),n,e)) = 



U( y( s, n, e)). Pix s > s* and suppose m( s-1, e)~ m( s*, e)+n. If 

Case m1 holds, then m( s, e)~ m( a*, e)+n. If Case m2 holds and 
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n<2m(s-1,e)+s, then m(s,e)~m(s*,e}+n, since c(s,n), U(y(s,n,e)). 

If n ~ 2rn( s-1, e)+s, then m( s, e)~ n. Thus m( s, e)<. m( s*, e)+n for 

all s > s*. This last is impossible, since the set [ m( s, e): s ~ 0] 
is infinite. 

B 
Suppose~ e( n} is defined for all n. Then ~~ yb( s, n, e) 

·exists for each n. and lim t(s,i,e) exists for each i. In addi­
s-tao 

ti~n, lim t(s,i,e) (regarded as a function of i) is recursive 
S~Q? 

in B. All this is clear from the definition of yb and t. 

B 
Lemma' 4: If <f e( n) is defined for all n and for ;;·all 

u~e__,A(u) is true, then d(p(e,i,lim t(s,i,e) ·)) =0 for only s-

finitely many i. 

Proof: We suppose the lemma is false and show C· is recursive in 

B 
B. Our first claim is that lf ~=d. Fix j. Let s be so large 

B 
that d{j) =d{w-l,j) and U(yb{w,j,e)) = C/ e(j) for all w~s. Let 

t( i) =lim t( s, i,e) for all i. Let w and i be such that j l. i, 
S~oO 

w L. s, c( w, i) • 2, 0 = d( w, p( e, ~, t( i) ) ) 'I= d( w-1 , p( e, i, t( i) ) ) and 

t( i) = t( w, i, e). It follows from Case 2 of the definition of d 

that d(w-1,j)=U{yb(s,j,e)), since j<i. But then d(j)=)P!(j), 

since w ~ s, and our first claim is proved. 

Our second claim is that for all sufficiently large i, 

d(p(e,i,t(i))) =lim c(s,i). Our first and second claim~ together 
sJoo 

with the fact that t is recursive in B, imply that C is recursive 

in B. Our second claim is a conquence of lemma 2 and the fact 

that for all u~ e, A( u) is true. If u .(. e and u is stable, then 
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A(u) tells ua that the set [ m(s,u) : s~O} is finite. If u<e 

and u is stable, let m( u} be the largest member of { m( s,u): s >o}. 

If u < e and u is non-stable, then u = ei for some i; let 

m(u} = ni. Recall that ni is the least witness to the fact 

that e is unstable. Thus lim y(s,v,u} exists if u<e and 
i s-

v < m( u) . Let y be so large that y( s, v, u) ~ y if s ~ 0, u ~ e and 

v<m(u). Fix i_?y. We show d(p(e,i,t(i))) =lim c(s,i). If 
s ... • 

lim c(s,i)=l, then c(s,i)=l for all s, and d(s,p(e,i,t(i)))=l 
s~ 

for all s. Suppose 1\: c( s, i) = 2. Let w be so large that 

c(s,i) =2, t(s,i,e) =t(i), and for all j<i d(s-l,j) =U(yb(s,j,e)) 

for all s >w. The existence of w follows from our first claim. 

By lemma 2, there i-s an s >w such that for all u ~ e, if u is 

non-stable (hence equal to ei for some i), then either 

m( s,u) <ni or r( s,ni,u) =0 or y( s,ni,u} =0. We show 

d(s,p(e,i,t(i)))=O. Case d2 is such that we need only show it 

is not the case that 1u~e1v<m(s,u)[r(s,v,u)=l and p(e,i,t(i)) 

< y(s,v,u}]. Fix u~e and v<m(s,u). Suppose u is stable. Then 

y( s, v, u) 5 y ~ i ": p( e, i, t( i)). Suppose u is non-stable. Let u =e .. 
1 

If v<ni' then v<m(u} and y(s,v,u}~y~p(e,i,t(i)). Suppose 

v ~ ni. Then m( s, u} -' ni, and consequently, r( s, ni, u} = 0 or 

y(s,ni,u) =0. If r(s,ni,u) =0, then r(s,v,u) =0 by remark Nl, 

since ni ~v. Suppose y( s,n1 ,u) = 0. Then ni2: m( s,u) by remark 

N2. But m( s, u) > ni, aince we ·have supposed v ~ ni. 

Leuma 5: If for all u 5 e A('u) is true, then B(e) is true. 

Proof: Our first claim is (L) and its proof is identical to the 

proof of the second claim of lemma 2. (L): jy such that for all 

m,x and · i, m<t(x,i,e) and p(e,i,m) 2:Y implies d(p(e,i,m) =0. 

; I 

I 
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We are ready to prove B(e). We will use only lemma 4 and (L). 

B 
First we suppose that ~e(n) is undefined for some n; let N be 

the least such n. It follows from the definition of yb that 

lim t( s, i, e)= c. for all i ~ N. Let y have the property described 
·~()I) 

by ( L). Then for all i and m, i ~ N and p( e, i ,m) ~ y implies 

d( p( e, i, m)) = 0. If i<N, then lim t(s,i,e) is finite; 
s-i• 

conse~ 

quently, the set {p(e,i,m): d(p(e,i,m))=O and i<N} is finite 

by Case d3 of the definition of d. Now d(p:) = 0 only if 

pn = p( e, i,m) for some i and m or pn = p( f( s), 1). It follows 
e e 

that the set {n: d( p:) = 01 is recursive, hence recursive in B. 

Now suppose cp!(n) is defined for all ' n. Then lli t(s,i,e} is 

finite for all i. Let this limit be t(i). Recall that 

t( s+1, i, e)> t( s, i, e) for all s and i. It follows . from ( L) that 

for all i and m, m<t(i) and p(e,i,m)~y implies d(p(e,i,m)) :::0. 

' 
By lemma 4 the set {p( e, i, t( i) ): d( p( e, i, t( i))) = o} is finite. 

By Case d3, d( p( e, i,m)) = 1 if m> t( i). Since t( i) is recursive 

in B, it follows that the set {n: d( pn) = 01 is recursive in B. e -

Lenu:nas 3 and 5 ~onstitute a proof that A(e) and B(e) are 

true for all e. 

Lemma 6: C is not recursive in D. 

Proof: 
D 

Suppose lim c( s,n) = cp ( n) for all n. Then e is stable, 
••• e 

and by A( e), the set {m( s, e): s ~ 0} has a greatest member, say 

M. Let w be so large that lim c(s,n)=c(s,n)=U(y(s,n,e)) 
S .. OD 

when s ~w and n ~M. If s ~w, then either 

(a): c(s,n), U(y(s,n,e)) for some n~m(s,e) 
or 

( b): rJ.. s, e) = m( s -1, e )+s. 

If (a) holds, then M <m( s, e). Thus (b) must hold for infinitely 

I, 
I 
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many s. But then M<m(s,e) for somes, which contradicts the 

definition of M. 

Letlllla 7: DiU not recursive in B. 

B 
Proof: Suppose d( n) = cp ( n) for all 'D. Then lim t( s, i, e) is e s~~ 

finite for each i. Let t( i) = ~'!: t( s, i, e). By lemma 4, there 

is an n such that d( p( e, i, t( i}}) •1 for each i > n. We shall 

find an i such that i > n and d( p( e, i, t( i))} = 0. We proceed as 

in lemma 4. Define y as in lemma 4. Fix i ~ y+n. Define w and 

8 as in lemma 4. Then the final argument of lemma 4 tells that 

d( s, p( e, i, t(i}}} = 0. 

Let ~ be the degree of D. It follows from lemmas 6 and 7 

that .£_ i, .!! and ~ i J!. We have !! ~ ~' since d( p( m, 1)) = 0 if and 

only if mE B. It remains only to show that D 1s recursive in C. 

We give an intutive description of a procedure for computing 

D from C. Our description is such that the translation of E 

into a system of equation that define D recursively in C is not 

diffuclt. We need a recursive function Q such that 

Q( u , v , s , e , i , m) if u<e 

v<m(s,u) 

r( s, v, u) = 1 

p( e, i , m} < y( s , v, u) 

otherwise. 

We also need a function R such that 

R( s , e, n) = .fi 

0 

if for all u, i, m and t, u < e and t < n and 
p( u, i , m) < y( s, t , e) imp 1 i e 8 that 
d( s -1 , p( u, i, m} ) = d( p( u, i , m) } , 

and for all i and t, i E B and t < n and 
p( i, 1) < y( a, t, e) implies that 
d( s -1, p( i, 1) = d( p( i, 1)); 

otherwise. 
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We need the next two lemmas to describe E: 

Lemma 8: Q(u,v,s,e,i,m) =R(s,u,v) =1 implies that for 

all w ~ s, Q( u, v, w, e, i, m) = 1 . 

Proof: We proceed with an induction on w ~ s. Fix w > s and suppose 

Q and R hold for that w. Recall that f, the recursive function 

whose range is B, is 1-1. It follows from lemma 1 that v<m(w+1,u) 

and that y(w,t,u)=y(w+l,t,u) for all t~v. But then R(w+l,u,v) 

is 1 and r(w+l,v,u) = 1, and consequently, Q( u,v,w+l,e, i,m) = 1. 

Lemma 9: For all w there is an s ~v such that for all 

u and v, Q(u,v,s,e,i,m) = 1 implies R(s,u,v) = ·1. 

Proof: Fix w, e, i and m. For each u < e, define m( u) as in the 

second half of the proof of lemma 4. Define y as in lemma 4. 

Thus y(s,v,u)~y if 1~0, u5e and v<m(u). It is safe to 

suppose that v is so large that for all s >w and v ~ y, d( s-1, v) 

= d( v). By lemma i there is an s >w such that for any non-stable 

u ~ e, we have either m( s, u) ~ "j or r( s, n j , u) = 0 or y( s, n j , u) = 0, 

where u=ej; recall that if u is non-stable, then m(u)=nj. Fix 

u and v and suppose Q(u,v,s,e,i,m) .1. We show R(s,u,v) = 1. 

Firat we suppose u ia stable. Then v<m(s,u)~m(u) since Q is 1. 

Consequently for all nand t, t~v and n<y(a,t,u) implies that 

d(s-l,n)=d(n), Iince s>w. But then R(s,u~v)=l. Now we 

suppose u is non-stable. Let u = ej. Then m( u) = n( j). 

m( s, u) ~m( u), then v <m.( u), and as above, R( a, u, v) = 1. 

If 

Thus 

r( s, m( u), u) • 0 or y( s, m( u), u) = 0. X f the former, then v < m( u), 

since r( s, v, u) = 1; this last follows from Nl. Suppose the 

latter is zero; then it follows from N2 that m( u) >m( s, u). But 

then v <m( u) . 

I 

il 
, ,l 
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We return to the description of procedure E. Fix z. We 

eompute d(z) with the help of C. If z is not of the form ,p(b,l) 

or p(e,i,m), then d(z)=l. If zs:p(b,l), then d(z)=O if and 

only if bEB. Suppose z=p(e,i,m). Then the set (s: t(s,i,e)=j} 

is recursive in B, since t(s,i,e)~t(s+l,i,e) forall s. We con-

sider three cases: 

(a): 

(b): 

(c): 

for all s, t( s, i, e) <m; 

there exists an_ s such that t(s,i,e)>m; 

1 im t( s , i , e) = m . 
S~CI 

With the help of B, we can decide which of the cases holds; note 

that the monotonicity of t(s,i,e), regarded as a function of s, 

is vital. If (a) holds, then case d3 tells us that d( z) = 1. 

Suppose (b) holds. Let w* be such that t(a,i,e)>m for all s~w*. 

We can determine w* with the help of B. Suppose d( s, z) = 1 for 

all s <w*. Then d( z) = 0 if and only if there exists an s such 

that for all u an.d v, s >w* and Q( u, v, s, e, i,m) = 0, since case 

dl applies when s ~ w*. By 18lll'lla 9, there is an s ~ w* such that 

for all u and v,Q(u,v,s,e,i,m) =1 implies R(s,u,v) = 1. We can 

find s if we know the value of d(x) for some of the following x: 

x = p( u, j, k), where u < e; x = p( j, 1), where j E B. (Recall that 

d(p( j,l)) =0 if and only if j EB.) If Q(u,v,s,e,i,m} =0 for 

all u and v, then d( z) = 0; we only have to check u < e and 

v<m(s,u). Suppose for some u and v,Q(u,v,s,e,i,m)=l. Then 

we have R( a, u, v) = 1 by definition of s. By lemma 8 it follows 

that Q(u,v,w,e,i,m) =1 for all w.~s. But then d(z) =0 if and 

only if d(w,z) =0 for some w<s. Finally, we suppose (c) holds. 
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Let w• be such that t( s, i, e) = m for all s ~ w' . We can determine 

w' with the help of B. suppose d(s,z):l: for all s<w'. Then 

d( z) = 0 if and only if there exists an s >w' such that c( s, i) = 2 

and for all u and v Q( u,v,s,e,i,m) =0 and for all j < i 

d(s-l,j) =U(yb(s,j,e))),since Case d2 applies when s~w'. If 

j<i, then yb(a,j,e)=lf:: yb(s,j,e) for all s~w•, since 

t( w•, i, e)= lim t( s, i, e)= m. Let v* > w' be such that for all 
S~et 

s ~v*, c( s,i) = 1!= c( s, i) and for all j < i, d( s-1, j) = d( j). We 

can determine v* with the help of C and the values of d(x) for 

x · z, since j<i implies that j<p(e,i,m). If 1 im c( s , i ) = 1 
S-let 

or d( j) # U( U= yb( s, j, e) for some j < i, then d( z) = 1. Suppose 

this last hypothesis is false. Suppose also that d( s, z) = 1 for 

all s < v*. Then d( z) = 0 if and only if there exists an s >v* 

such that for all u and v, Q(u,v,s,e,i,m)=O,since Case d2 

applies when s ~ v*. We now continue as in case (b) . With the 

help of lemmas 8 and 9, d(z) is easily determined. 

That completes our computation of d(z) from C. To find 

d(z), we had to know the value of d(x) for infinitely many x: 

x<z; X=p(u, j, k), where u < e; x = p(j, 1) where j E B. We used 

very heavily the fact that B is recursive in C. 

We combined this principle with a further combinatorial 

principle expressed by Lemma 4 in order to show the recursively 

enumerable degrees are dense. Lemma 4 was needed to show D is 

not recursive in B. The prethinking which inspired Lemma 4 may 

be described as follows. C is not recursive in B. So let us 

keep planting members of C in D until D looks enough like C to 
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guarantee that D is not recursive in B. But let us not plant 

members of C in D with utter abandon because we wish to have C 

not recursive in D. At the same time let us plant B in D with 

utter abandon so that B will be recursive in D. We plant a 

member of C in D when we aet d(s, p(e, i, t{s, i, e)))= 0; 

this happens only if c(s, i) = 2. (Recall c(s, i) = 2 only if 

i E C.) In order to prevent us from planting too much of C in 

D, we must have a method of unplanting members of C already 

planted in D. Suppose we have planted i E C in D; that is, we 

set d(s, p(e, i, t(s, i, e)))= 0. If for some w > s,t(w,i,e) > t(s,i,e), 

then Case dl or d2 may give us a chance of setting 

d(w, p(e, i, 1 + t(s, i, e)))= 0; if this last happens, we have 

unplanted i. We have the opportunity to unplant i if and only 

if u~ t( s, i, e;) > t( s, i, e). This happens if and only if 

~:(i) is undefined or unequal to yb(s, i, e). If for some i, 

~:(i) is undefined, there is no need to plant any member of C 

in D. If ~B(i) is defined for all i, then Lemma 4 tells us 
e 

that we do not permanently plant infinitely much of C in D . . Of 

course the proof of Lemma 4 turns on the fact that C is not 

recursive in B. 

Many of the more recent results in the theory of recursive 

functions have made extensive use of the infinite-injury prior-

ity method. There are still a large number of open questions 

in this theory and the solution of them will probably use the 

priority method a great deal. Among the open questions are the 
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following: 1) Is the · theory of ordering of r.e. degrees decide-

able? 2) Is the ordering of r.e. degrees greater than a given 

degree isomorphic to the ordering of r.e. degrees? 3) Is the 

theory of ordering of r . e. degrees equivalent in some manner to 

the theory of the ordering of degrees of arithmetical sets? 
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